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Dispersion compensation in whispering-gallery
modes

Vladimir S. Ilchenko, Anatoliy A. Savchenkov, Andrey B. Matsko, and Lute Maleki

Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive,
Pasadena, California 91109-8099

Received May 29, 2002; revised manuscript received July 31, 2002; accepted August 9, 2002

We show that manipulation by a spatial profile of the refractive index of a circularly symmetric dielectric cavity
results in a novel way of fine tuning frequency separations as well as spatial localizations of high-Q
whispering-gallery modes excited in the cavity. The method permits dispersion compensation in the modes
(spectrum equalization), diminishes the quality-factor limitation by surface roughness and contamination, and
allows critical coupling to ultra-high-Q modes without maintaining an air gap with evanescent couplers.
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1. INTRODUCTION
Optical cavities consisting of two or more mirrors are uti-
lized in all branches of modern linear and nonlinear op-
tics. Practical usage of such cavities is technically re-
stricted, especially when high performance of the devices,
i.e., a high quality factor and high mode stability, is im-
portant. Fabrication of good optical mirrors, their align-
ment, and binding are rather expensive and difficult
tasks.

Open dielectric microcavities may become an alterna-
tive for the usual optical cavities. Fabrication of these
microcavities is rather simple and inexpensive. The
cavities demonstrate high mode stability and high quality
factors. High-Q optical microcavities with whispering-
gallery modes (WGMs)1–4 are already in the core of many
evolving photonics applications from high-stability
narrow-linewidth microlasers,5–15 high-resolution spec-
troscopy, remote sensing, and optoelectronic oscilla-
tors16–22 to optical memory devices, true-time optical de-
lay lines, and optical switching devices.23–27

However, there are significant differences between
properties of open dielectric microcavities and conven-
tional optical cavities constructed of mirrors. Originally
proposed spherical WGM microcavities (microspheres)
are overmoded, with complex quasi-periodic spectra and
unequal mode spacings translating from both material
and cavity dispersion. Significant reduction in the mode
spectral density is achieved in a highly oblate spheroidal
microcavity (microtorus),28 but still-current fabrication
technologies cannot produce dielectric microcavities with
equidistant spectra.

Performance and range of applications based on WGM
microcavities will be significantly expanded if a method is
found to make microcavity modes equally spaced with
precision corresponding to a fraction of the resonance
bandwidth. Such a dielectric microcavity with an equi-
distant mode spectrum is similar to the Fabry–Perot reso-
nator. A dielectric cavity with an equidistant spectrum
may be used, for example, in frequency comb generators,
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optical pulse generators, broadband energy-storage cir-
cuits of electro-optical devices, and in other applications
in which conventional optical cavities are utilized.

Within current technology based on uniform resonator
material, the smaller the cavity size is, the more the cav-
ity dispersion is manifested in unequal spectral separa-
tion between adjacent modes. The problem is rooted in
the fact that the radial distribution of whispering-gallery
resonant modes is frequency dependent. Higher-
frequency modes propagate on paths that are slightly
closer to the surface than those of lower-frequency modes.
Thus higher-frequency modes travel in trajectories of a
slightly larger radius and slightly longer optical path
lengths.

Optical path length is a function of both the physical
distance and the index of refraction. We propose to fab-
ricate a cavity out of a cylindrically symmetric material
whose index decreases in the radial direction. With the
proper choice of a gradient of the refractive index, circular
trajectories corresponding to the WGM at different fre-
quencies will have identical optical path lengths. This
results in an equidistant mode spectrum of the cavity.

We show that mode confinement is also changed in a
cavity made from a graded-index material.29 The posi-
tion of the maximum of the field of each mode shifts to-
ward the cavity center, and mode volumes are increased
and displaced away from the surface, thereby desensitiz-
ing the quality factor from the effects of surface contami-
nation and roughness. Both of these effects are identi-
fied currently as the main factor preventing the
improvement of Q toward the fundamental limit imposed
by bulk-material attenuation. Therefore we predict a
substantial increase of the mode quality factor in graded-
index cavities.

Finally, burying the mode volume well inside the reso-
nator helps to address the technical problem of maintain-
ing the tunneling gap between a high-Q WGM cavity and
an evanescent wave coupler device. With appropriate
engineering, critical coupling will be obtained under full
mechanical contact with the coupler.
2003 Optical Society of America
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2. WHISPERING-GALLERY MODES:
BASICS
Let us consider a dielectric sphere with dielectric constant
distribution e(r) that depends on the radius r only. The
electric field in the sphere obeys the Maxwell equation

¹ 3 ~¹ 3 E! 1
e~r !

c2

]2E

]t2 5 0, (1)

where c is the speed of light in vacuum. Presenting the
electric field as E 5 *0

`dve(r)exp(2ivt), we rewrite the
above equation as

¹ 3 ~¹ 3 e! 2 k2e~r !e 5 0, (2)

where k 5 v/c is the wave vector. Equation (2) may be
solved in terms of TE and TM modes. Keeping in mind
that ¹ • (ee) 5 0, we write
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where radial functions C and F stand for TE and TM
modes, respectively, and Yn,m are vector spherical func-
tions with angular number n and magnetic number m. It
is worth noting that modes of an infinite dielectric cylin-
der may be described in a similar way.

Radial field distribution for TE modes30 of a dielectric
cavity (sphere or cylinder) can be described by the equa-
tion

]2C

]r2 1 Fk2e~r ! 2
n~n 1 1 !

r2 GC 5 0, (4)

where n is the angular momentum number (n
5 0, 1, 2, 3,... for a sphere and n 5 1/2, 3/2, 5/2,... for an
infinite cylinder). Electric field distribution has a depen-
dence C(r)/r for a sphere and a dependence C(r)/Ar for a
cylinder.

Equation (4) has an exact solution for homogeneous di-
electric cavity e(r) 5 e0 5 constant. This solution reads
C(r) 5 Jn11/2(kr), where Jn11/2(kr) is the Bessel func-
tion of the first kind. The mode spectrum is determined
by the boundary conditions C(r) → 0 for r → ` and 0,
where R is the radius of the sphere or cylinder. In the
case of high mode order n @ 1,
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where aq is the qth root of the Airy function, Ai(2z),
which is equal to 2.338, 4.088, and 5.521 for q 5 1, 2, 3,
respectively.31

The first-order approximation for the mode eigenfunc-
tions and eigenvalues may be found from the solution of
an approximate equation:

]2C

]r82 1 Fk2e0 2
n~n 1 1 !

R2 2 r8
2n~n 1 1 !

R3 GC 5 0, (6)

where we assume that n @ 1, r8 5 R 2 r, and C(0)
5 C(R) 5 0. Comparison of the numerical solution of
the exact equation (4) and of the approximate equation (6)
shows that the solution of Eq. (6) gives satisfactory re-
sults for the eigenvalues as well as eigenfunctions of the
exact problem.

To describe dispersion of the modes, we compare a
value equal to the ratio of frequency separations between
two pairs of neighboring modes and the mode width. The
number of equidistant modes in the case of large n can be
estimated as

N 5 maxqUS ]2kn,q

]n2 D 21 kn,q

2Q
U. (7)

From expression (5) we derive

N1 . 1.2
n8/3

Q
. (8)

The mode dispersion can be very high for realistic condi-
tions. For example, for n 5 103, cavity modes can al-
ready be treated as unequidistant for Q > 108. When
one keeps in mind that the maximum-achieved quality
factor for a WGM is 9 3 109,3 one can see that the dis-
persion problem is in fact quite important.

3. WHISPERING-GALLERY MODES IN A
CAVITY MADE OF A GRADED
DIELECTRIC
A. Dispersion Compensation for the Main Mode
Sequence
Let us now study the mode spectrum of a dielectric cavity
with a spatially distributed refractive index:

e~r ! 5 e0 1 e8~R 2 r !. (9)

We show in the following that by choosing a ratio between
constants e0 and e8 in an appropriate way one is able to
suppress the mode dispersion significantly.

Exact analytical solutions of Eq. (4) with e(r) deter-
mined by Eq. (9) is rather difficult to obtain. We there-
fore simplify the problem by assuming that the radius of
the cavity is large enough, R @ l, where l is the optical
wavelength in the material. In this case n @ 1, and al-
most all the energy of the mode is confined near the sur-
face of the cavity in a layer having a thickness ;Rn22/3.
Introducing r8 5 R 2 r, we decompose Eq. (4), assuming
that 1 @ r8/R:
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This equation has an exact solution:
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aq
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where Cq,0 is the field amplitude and kq is the root of the
equation
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It is easy to see that Eq. (12) gives a close approximation
of the first two terms of the decomposition [expression (5)]
if e8 5 0. For nonzero e8 we get
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The number of equidistant modes for the cavity can be
found from Eq. (7) and expression (13):
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Therefore, if e8 → 2e0 /R, the cavity has, to the first or-
der, an equidistant frequency spectrum. Our numerical
solution of the exact problem, presented in Fig. 1, con-
firms the results derived from the analytical solution.

B. Dispersion Compensation for the Radial Mode
Spectrum
Surprisingly, except for n-dispersion compensation, a
graded material cavity demonstrates radial dispersion
compensation (index q) (Fig. 2). This happens because
modes do not encounter the cavity boundaries for large
refractive-index gradients but only the potential dip cre-
ated owing to the gradient. As a consequence, radial pro-
files of cavity modes are nearly symmetrical, much in the
same way as harmonic-oscillator wave functions (see in-
set of Fig. 2).

This conclusion follows from complex-angular-
momentum theory.32 In this theory an analogy between
optics and mechanics is utilized, and the cavity modes are
described as eigenvalues of an effective potential U. For
WGMs with index n, this potential may be written as a
sum of an attractive wall of depth @e(r) 2 1#k2 with the
centrifugal potential n(n 1 1)/r2.

The potential is asymmetric when e does not depend on
radius r inside the sphere (see Fig. 3, solid curve). In the
spheres possessing dielectric susceptibilities increasing to
the sphere center, the potential pocket broadens, shifts
into the cavity, and becomes more symmetric. The mini-
mum of the potential is still on the sphere surface. For
the critical value of the susceptibility gradient, the poten-
tial resembles half of the oscillatory potential U ; (r
2 R)2ur→R20 (see Fig. 3, short-dashed curve). For the

Fig. 1. Normalized second-order dispersion ]2kq,n /(]kq,n
2) ver-

sus a normalized gradient of the index of refraction of the mate-
rial e8R/e0 for n0 ' 600. Unity dispersion corresponds to
u]2k1,n /(]k1,n

2)ue850 at n 5 n0 .
gradients beyond the critical value, the minimum of the
potential moves into the cavity. The deeper the mini-
mum of the potential is, the better it can be described by
the oscillatory potential (Fig. 3, long-dashed curve).

C. Engineering the Cavity Field Distribution for
Improving Mode Quality Factors
The gradient in the index of refraction affects the field
distribution in the cavity. By increasing e8, we push the
WGMs further into the resonator [Eq. (11)] (Fig. 4). This
might greatly reduce the losses caused by surface defects
such as dust or scratches. The change of the mode geom-
etry also changes cavity radiative losses.29 However, be-
cause radiative losses are usually insignificant compared
with the losses that are due to surface scattering, we do
not consider radiative losses here.

Moreover, an efficient coupling with WGMs may be
achieved by a prism or fiber coupler that is in physical
contact with the dielectric cavity. This may significantly
simplify usage of WGM cavities outside a laboratory.
Such a contact usually overloads the modes of a dielectric
cavity and results in a significant broadening of the reso-
nances. However, by engineering the profile of the di-
electric susceptibility gradient, we reduce the evanescent
field of the cavity in such a way that the coupling is still
possible, but the influence of the surface contamination is
greatly suppressed.

Usually, the quality factor of a WGM is determined by
three effects: absorption in the material, Qm ; surface
scattering losses, Qss ; and loading by the external cou-
pler, Ql . The load quality factor can be regulated from

Fig. 3. Effective optical potential U for a transparent dielectric
resonator with radius R. Solid curve, e(r) 5 const. (R . r);
short-dashed curve, e(r) 5 e0(3 2 2r/R) (critical gradient); long
dashed curve, e(r) 5 e0(5 2 4r/R).

Fig. 2. Dependence of wave-vector eigenvalues kq,n on a normal-
ized gradient of the index of refraction e8R/e0 for n ' 600.
Modes with different q become closer as the gradient increases.
The modes pushed far away from the cavity boundary are nearly
equidistant. Inset: amplitude profile for the fields for large in-
dex gradients. The mode wave functions are nearly symmetric.
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outside. It depends on the distance, d, from the coupling
prism to the sphere surface as follows:

Ql ; expS 4pdAe0 2 1

l
D , (15)

where l is the mode wavelength. The critical (optimum)
coupling with the mode is achieved if d is chosen such
that Ql 5 (1/Qss 1 1/Qm)21. Because usually Qm
@ Qss , one neglects the absorption of the material.

Both Qss and Ql are proportional to the ratio of the
field power on the surface of the cavity and the total en-
ergy of the mode.33 In other words, one can present the
power of the losses because of the surface scattering and
because of the coupler as Pss 5 bE(r 5 R)2 and Pl
5 aE(r 5 R)2, respectively, where a is a geometrical
factor that depends on the shape and the dielectric con-
stants of a coupler and a thin surface layer in which the
WGM is localized and on the distance between the coupler
and the cavity surface; b depends on the geometry of the
surface inhomogeneities and their optical parameters;
and E(r 5 R) is the amplitude of the electric field on the
cavity surface.

The quality factor may be determined as Ql,ss
5 W/(Pl,ssT), where W is the energy stored in the mode
and T is the oscillation period. By changing the profile of
the index of refraction e(r), we change the ratio W/E(r
5 R)2, but Ql /Qss stays unchanged. Therefore, by
choosing Ql /Qss 5 1/2 and reducing the absorption that
is due to the surface scattering via engineering a cavity
index of refraction such that Qss 5 Qm , we may reach
both the critical coupling and the maximum index of re-
fraction. The maximum achievable quality factors for
silica microspheres are approximately Qm 5 1012.33

For instance, to estimate the increase of the quality fac-
tors with the index gradient, it is convenient to use a
simple ratio. Let us consider two identical spherical mi-
crocavities except that the susceptibility of one cavity is

Fig. 4. Radial dependencies of the susceptibility of a cavity ma-
terial as well as of the amplitude profiles of the field (q 5 1) in-
side the cavity for various e8. Top, real scale for the field distri-
butions in the case of n0 5 600. The fields are localized close to
the cavity surface. Bottom, amplitude profiles in detail. Curve
(1) of the bottom plot corresponds to e8R/e0 5 0, curve (2) to
e8R/e0 5 1, curve (3) to e8R/e0 5 2, and curve (4) to e8R/e0
5 2.4. It is easy to observe the pushing of the mode out of the
cavity boundary (r 5 R) and into the cavity.
constant e0 and the susceptibility of the other is space-
dependent e(r) @e(R) 5 e0#. The ratio of the quality fac-
tors of the cavities is

Ql

Q̃l

.
Qss

Q̃ss

.
c2~r 5 R !

E
0

R

C2~r !dr

R~e0 2 1 !

2e0
, (16)

where Ql and Qss (Q̃l and Q̃ss) are the quality factors
that are due to loading and surface scattering for the cav-
ity with constant (graded) susceptibility and C(r)
; E(r) is the field distribution of a TE mode of the
graded cavity. The less that the field is on the surface of
the dielectric cavity C(r 5 R) (the deeper is the mode lo-
calization), the less are the absorption and coupling and
the higher the quality factors. The dependence is shown
in Fig. 5.

Finally, let us consider a situation in which a coupling
prism is in full contact with the dielectric cavity (d
5 0). The coupling losses exceed the surface scattering
losses in this case. We may increase Ql , changing e(r)
until the bulk optical losses become equal to the coupling
losses. At this point we have critical coupling but at a
much higher Q-factor level.

It is worth noting here that in some cases it is impor-
tant to increase the evanescent field of a dielectric cavity,
not to decrease it, as we discussed above. One example is
if the cavity is intended to be used as an optical sensor.
This problem may also be managed via manipulation of
e(r) dependence. It has been shown that WGMs tend to
be closer to the cavity surface if the index of refraction of
the cavity close to its surface exceeds the internal index of
refraction.29 Such dependence of the refractive index
will increase the surface absorption, but it will also in-
crease the coupling to the external space.

D. Numerical Simulations
Our approximation 1 @ r8/R breaks down for e8
→ 2e0 /R, so we are unable to infer the extent of the dis-
persion compensation and reshaping of the mode from
these analytical calculations. Our exact numerical simu-
lations show that the approximate analytical solution
gives rather satisfactory results for the gradients less
than the critical value.

Let us now solve the exact equation (4) with boundary
conditions C(r 5 0) 5 0 and C(r → `) 5 0 numerically.

Fig. 5. Quality factor Q̃ of a cavity with a gradient of the refrac-
tive index normalized by the quality factor Q of a cavity of the
same radius without the gradient versus a normalized gradient
of the refractive index. The plot is created for a cavity with ra-
dius R 5 4 mm, susceptibility e0 5 2.1, and mode wavelength
l 5 1.55 mm.
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The result is presented in Figs. 1 and 2. The second-
order dispersion versus gradient of the refractive index is
shown in Fig. 1. This dispersion determines the number
of equidistant modes N [Eq. (7)]. It is easy to see a good
correspondence between the eigenvalues of the exact
equation (4) (solid curves) and the first-order approxima-
tion of this equation [Eq. (10)] (dotted curves). It is im-
portant to note that in the region e8 > 2e0 /R, where Eq.
(10) is not valid, the second-order dispersion becomes
negative. This allows for compensation of the dispersion
of the cavity host material, which is not taken into ac-
count in our calculations. Except for the complete com-
pensation point in the vicinity of e8 5 2e0 /R, the disper-
sion decreases and reaches a minimum of a half percent of
the initial value for large gradients.

E. Suggestions for Implementation
It is not necessary to produce a cavity that has a gradient
of the index of refraction in the entire cavity. The modes
of the cavity are localized in the vicinity of the cavity sur-
face (Fig. 4). Therefore the gradient may be localized in
the vicinity of the surface as well.

For example, if we build a spherical cavity of 500 mm in
radius from an optically homogeneous material and study
modes with n 5 103 and quality factor Q 5 108, the mode
spectrum is not completely equidistant. In turn, if the
same cavity is fabricated from a graded material with
e8/e ' 40 cm21 gradient of index in the vicinity of the
cavity boundary DR ' 5 mm, at least a hundred modes of
the cavity can be treated as equidistant.

For example, there are multimode fibers with
germanium-doped cores (Ae0 ' 1.5) and pure silica clads
(Ae0 ' 1.45). Originally the fiber has steplike depen-
dence of the refractive index on the radius. Heating of
the fiber results in diffusion of the Ge ions into the clad.
This results in formation of the gradient in the refractive
index.

Let us consider a fiber with a 1-mm core diameter and
8-mm clad. In this case, the gradient is closed to the criti-
cal one after thermal diffusion is realized. In addition,
we may create a sphere from a high-index flint glass
(Ae0 ' 1.7) and cover it with fluoride glass (Ae0 ' 1.4).
Subsequent thermalization will allow us to create gradi-
ents that even exceed the critical one in a thick surface
layer.

4. CONCLUSION
In conclusion, we have demonstrated that a number of
important advantages can be achieved with a whispering-
gallery-mode microcavity fabricated from a material with
a graded index of refraction. Graded-index material is
widely available in the form of lenses and fibers. Such
material can be formed into microcavities with standard
mechanical and thermal fusion techniques. The main
advantage of the graded-index microcavity is that the
spectrum of resonant frequencies is equidistant to first or-
der. Second, the mode field is pushed away in a con-
trolled manner from the boundary to inside the dielectric,
thereby diminishing the detrimental effect of surface
roughness and contamination. Finally, an appropriately
engineered near-surface gradient will eliminate the need
for an adjustable (and unstable) air gap between the
WGM microcavity and the evanescent coupler. This ap-
proach will be a major enhancement for a variety of ap-
plications and a significant breakthrough permitting
simple packaging solutions for practical devices. We ex-
pect that ultra-high-Q microcavities based on a gradient-
index approach will not only enhance the performance
and expand the range of applications but also provide a
critical step toward their wide acceptance as a novel
building block of modern photonics.
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